Higher-order Szegő theorems with two singular points

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order Szego theorems with two singular points

We consider probability measures, dμ = w(θ) dθ 2π+dμs, on the unit circle, ∂D, with Verblunsky coefficients, {αj}j=0. We prove for θ1 6= θ2 in [0, 2π) that ∫ [1− cos(θ − θ1)][1− cos(θ − θ2)] logw(θ) dθ 2π > −∞ if and only if ∞ ∑ j=0 ∣∣{(δ − e−iθ2)(δ − e−iθ1)α} j ∣∣2 + |αj | <∞ where δ is the left shift operator (δβ)j = βj+1. We also prove that ∫ (1− cos θ) logw(θ) dθ 2π > −∞

متن کامل

Szegő Limit Theorems

The first Szegő limit theorem has been extended by Bump-Diaconis and Tracy-Widom to limits of other minors of Toeplitz matrices. We extend their results still further to allow more general measures and more general determinants. We also give a new extension to higher dimensions, which extends a theorem of Helson and Lowdenslager. §

متن کامل

Analytic order of singular and critical points

We deal with the following closely related problems: (i) For a germ of a reduced plane analytic curve, what is the minimal degree of an algebraic curve with a singular point analytically equivalent (isomorphic) to the given one? (ii) For a germ of a holomorphic function in two variables with an isolated critical point, what is the minimal degree of a polynomial, equivalent to the given function...

متن کامل

Second-order linear differential equations with two irregular singular points of rank three: the characteristic exponent

Abstract For a second-order linear differential equation with two irregular singular points of rank three, multiple Laplace-type contour integral solutions are considered. An explicit formula in terms of the Stokes multipliers is derived for the characteristic exponent of the multiplicative solutions. The Stokes multipliers are represented by converging series with terms for which limit formula...

متن کامل

Higher order maximum persistency and comparison theorems

We address combinatorial problems that can be formulated as minimization of a partially separable function of discrete variables (energy minimization in graphical models, weighted constraint satisfaction, pseudo-Boolean optimization, 0-1 polynomial programming). For polyhedral relaxations of such problems it is generally not true that variables integer in the relaxed solution will retain the sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2005

ISSN: 0021-9045

DOI: 10.1016/j.jat.2005.02.003